
Programmers are Users Too:
Human Centered Methods for Improving
Tools for Programming

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

1 © 2017 – Brad A. Myers

Natural Programming Project
• Researching better tools for programming since 1978
• Natural Programming project started in 1995
• Make programming easier and more correct by making it more

natural
– Closer to the way that people think about algorithms and solving their

tasks
• Methodology – human-centered approach

– Perform studies to inform design
• Provide new knowledge about what people do and think, & barriers

– Guide the designs from the data
• Design of programming languages and environments

– Iteratively evaluate and improve the tools
• Target novice, expert and end-user programmers

© 2015 – Brad A. Myers2

http://www.cs.cmu.edu/%7ENatProg/index.html

End User Programming
• People whose primary job is not programming
• [Scaffidi, Shaw and Myers 2005]

– 90 million computer users at work in US
– 55 million will use spreadsheets or databases at work (and therefore

may potentially program)
– 13 million will describe themselves as programmers
– 3 million professional programmers

• All of these people use APIs!

© 2017 – Brad A. Myers

90,000,000

55,000,000

13,000,000
6,000,000 3,000,000

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

Users Spreadsheets and
DBs

Self-Described
Programmers

Scientists &
Engineers

Professional
Programmers3

Program Complexity and Sophistication

Goal: Gentle Slope
Systems

Difficulty
of

Use

Goal

Flash

ActionScript

C Programming

Visual Basic

Basic

C or C# Programming
Swing

Java

Low
Threshold

High
Ceiling

4 © 2017 – Brad A. Myers

Web Development

CSS & HTML

JavaScript

editor

Server-side

Human Centered Approaches?
• Concerned with everything the user encounters

– Functionality & Usefulness
– Content
– Labels
– Presentation
– Layout
– Navigation
– Speed of response
– Emotional Impact
– Context (social environment in which use happens)
– Documentation & Help

• Measures:
– Learnability, Productivity, Errors, …

5 © 2017 – Brad A. Myers

What Can Be Addressed?
• Everything the developer encounters
• Tools – IDEs & their user interfaces
• Languages themselves

– Not necessarily just “taste”, “intuition”
– Error-proneness

• APIs
– “Interface” between developer and functionality
– “Languages” by themselves are almost irrelevant these days

• Documentation for all of the above
• Processes & context of development
 Consider the whole “system” together
 New as well as legacy systems

6 © 2017 – Brad A. Myers

“Human Centered Approaches” ̶̶
More Than Lab User Studies

• Design & aesthetics matter & will affect:
– User’s performance
– Errors
– Adoption of your tool

• Many different methods for answering many different
questions
– Before design time
– During design & implementation
– After implementation

7 © 2017 – Brad A. Myers

Many HCI Methods
• Contextual Inquiry
• Contextual Analysis
• Paper prototypes
• Think-aloud protocols
• Heuristic Evaluation
• Affinity diagrams
• Personas
• Wizard of Oz
• Task analysis
• A/B testing
• Cognitive Walkthrough
• Cognitive Dimensions
• KLM and GOMS (CogTool)
• Video prototyping

• Body storming
• Expert interviews
• Questionnaires
• Surveys
• Interaction Relabeling
• Log analysis
• Storyboards
• Focus groups
• Card sorting
• Diary studies
• Improvisation
• Use cases
• Scenarios
• “Speed Dating”
• …

8 © 2017 – Brad A. Myers

Dangers of Not Applying Human Centered
Approaches
• Tools may prove to be not useful

– Useful = solves an important problem
• Happens frequently
• Difficult to solve otherwise
• Developers believe academic tools solve unimportant problems

[How do practitioners perceive Software Engineering Research?]

– Tools may not actually solve the problem
• Example: a study suggested that Tarantula tool identifying potentially

faulty statements for debugging was not helpful
– Changed the task, but telling if the identified statement was

actually faulty not easier than finding the bug
– Parnin, C. and Orso, A. 2011. Are Automated Debugging Techniques Actually Helping Developers International

Symposium on Software Testing and Analyisis (2011), 199–209.

} HCI questions

9 © 2017 – Brad A. Myers

Dangers of Not Applying Human Centered
Approaches

• Tools may show no measurable impact
– Desired advantage overwhelmed by problems with

other parts
– Example: Emerson Murphy-Hill found that refactoring

tools are under-utilized and programmers do not
configure them due to usability issues

• Emerson Murphy-Hill, Chris Parnin, Andrew P. Black. How we refactor, and how we know it. In ICSE '09: Proceedings of
the 2009 IEEE 31st International Conference on Software Engineering (2009), pp. 287-297.

10 © 2017 – Brad A. Myers

Human Centered Approaches are
Not Too Difficult for You
• Getting some user data better than none
• Observing real usage reveals many opportunities

– Insights about new issues to address, not necessarily what originally
planned

• Thomas LaToza’s Reachability Questions from Architecture study
• Jeff Stylos’s method placement result from study of class size: from

2.4 to 11.2 times faster
server.send (message) vs.
mail.send (server)

• Collaborating with Graphic Designers for even a short time can
provide significant improvements in aesthetics

11 © 2017 – Brad A. Myers

Key Decision: What is Your Question?

• What do you need to find out or show?
– What claim to do you want to make?

• Showing that a tool is usable is different from
whether it is useful

• Exploring what people are doing, is different from
determining how often an observed behavior happens
Drives what type of method to use, and tasks to be

done with it

12 © 2017 – Brad A. Myers

Product Lifecycle

13 © 2017 – Brad A. Myers

Source: http://www.accordtech.co.in/Product%20Development%20Lifecycle.htm

http://www.accordtech.co.in/Product%20Development%20Lifecycle.htm

Product Lifecycle
Exploratory Studies

 Contextual Inquiries
 Interviews
 Surveys
 Lab Studies
 Corpus data mining

Evaluative Studies
 Expert analyses
 Usability Evaluation
 Formal A/B Lab Testing

Design Practices
 “Natural programming”
 Graphic & Interaction

Design
 Prototyping

Field Studies
 Logs & error reports

14 © 2017 – Brad A. Myers

Exploratory Studies

• Identify what is really happening
• Discover important problems
• Quantify need

15 © 2017 – Brad A. Myers

Contextual Inquiry
• Beyer, H. and Holtzblatt, K., Contextual Design: Defining Custom-Centered Systems. 1998,

San Francisco, CA: Morgan Kaufmann Publishers, Inc.

• A kind of “ethnographic” or “participatory design”
method

• Watch developers while they are performing their
real tasks

• Objective, concrete data about real activities
• May be followed by a survey, to establish generality

of the issues

16 © 2017 – Brad A. Myers

Why Contextual Inquiry?
• Usually reveals many barriers and problems in current practice
• Helps develop insights

– Be open to inspiration
• Not for confirming what you already know
• Qualitative data (not quantitative)

– CIs are not for gathering statistics, analytics
• In contrast to surveys & lab studies

• But need to be able to observe real tasks

17 © 2017 – Brad A. Myers

Example of Contextual Inquiry & Surveys
• “Developers Ask Reachability Questions”

– Thomas D. LaToza and Brad Myers, ICSE'2010, Cape Town,
South Africa, 2-8 May 2010. pp. 185-194.

– “Search across feasible paths through a program for target
statements matching search criteria”

• Watched 17 developers investigating unfamiliar code
• Also surveyed 460

developers
• Over 100 other

hard-to-answer
questions

18 © 2017 – Brad A. Myers

Many hard-to-answer questions about code

How did this runtime state occur? (12) [15]
What runtime state changed when this executed? (2)
Where was this variable last changed? (1)
How is this object different from that object? (1)
Why didn’t this happen? (3)
How do I debug this bug in this environment? (3)
In what circumstances does this bug occur? (3) [15]
Which team’s component caused this bug? (1)

Debugging (26) How do I implement this (8), given this constraint (2)? (10)
Which function or object should I pick? (2)
What’s the best design for implementing this? (7)

Implementing (19)

Why was it done this way? (14) [15][7]
Why wasn’t it done this other way? (15)
Was this intentional, accidental, or a hack? (9)[15]
How did this ever work? (4)

Rationale (42) When, how, by whom, and why was this code changed or inserted?
(13)[7]
What else changed when this code was changed or inserted? (2)
How has it changed over time? (4)[7]
Has this code always been this way? (2)
What recent changes have been made? (1)[15][7]
Have changes in another branch been integrated into this branch? (1)

History (23)

What are the implications of this change for (5) API clients (5),
security (3), concurrency (3), performance (2), platforms (1), tests
(1), or obfuscation (1)? (21) [15][24]

Implications (21)

Is there functionality or code that could be refactored? (4)
Is the existing design a good design? (2)
Is it possible to refactor this? (9)
How can I refactor this (2) without breaking existing users(7)? (9)
Should I refactor this? (1)
Are the benefits of this refactoring worth the time investment? (3)

Refactoring (25)

Is this code correct? (6) [15]
How can I test this code or functionality? (9)
Is this tested? (3)
Is the test or code responsible for this test failure? (1)
Is the documentation wrong, or is the code wrong? (1)

Testing (20)

Should I branch or code against the main branch? (1)
How can I move this code to this branch? (1)
What do I need to include to build this? (3)
What includes are unnecessary? (2)
How do I build this without doing a full build? (1)
Why did the build break? (2)[59]
Which preprocessor definitions were active when this was built? (1)

Building and branching (11)What is the intent of this code? (12) [15]
What does this do (6) in this case (10)? (16) [24]
How does it implement this behavior? (4) [24]

Intent and Implementation (32)
How big is this code? (1)
How overloaded are the parameters to this function? (1)

Method properties (2)
Where is this functionality implemented? (5) [24]
Is this functionality already implemented? (5) [15]
Where is this defined? (3)

Location (13)

What is the performance of this code (5) on a large, real dataset (3)? (8)
Which part of this code takes the most time? (4)
Can this method have high stack consumption from recursion? (1)
How big is this in memory? (2)
How many of these objects get created? (1)

Performance (16)

What threads reach this code (4) or data structure (2)? (6)
Is this class or method thread-safe? (2)
What members of this class does this lock protect? (1)

Concurrency (9)

What assumptions about preconditions does this code make? (5)
What assumptions about pre(3)/post(2)conditions can be made?
What exceptions or errors can this method generate? (2)
What are the constraints on or normal values of this variable? (2)
What is the correct order for calling these methods or initializing
these objects? (2)
What is responsible for updating this field? (1)

Contracts (17)

In what situations or user scenarios is this called? (3) [15][24]
What parameter values does each situation pass to this method? (1)
What parameter values could lead to this case? (1)
What are the possible actual methods called by dynamic dispatch here? (6)
How do calls flow across process boundaries? (1)
How many recursive calls happen during this operation? (1)
Is this method or code path called frequently, or is it dead? (4)
What throws this exception? (1)
What is catching this exception? (1)

Control flow (19)

What depends on this code or design decision? (4)[7]
What does this code depend on? (1)

Dependencies (5)

What is the original source of this data? (2) [15]
What code directly or indirectly uses this data? (5)
Where is the data referenced by this variable modified? (2)
Where can this global variable be changed? (1)
Where is this data structure used (1) for this purpose (1)? (2) [24]
What parts of this data structure are modified by this code? (1) [24]
What resources is this code using? (1)

Data flow (14)

What are the composition, ownership, or usage relationships of this
type? (5) [24]
What is this type’s type hierarchy? (4) [24]
What implements this interface? (4) [24]
Where is this method overridden? (2)

Type relationships (15)

How does this code interact with libraries? (4)
What is the architecture of the code base? (3)
How is this functionality organized into layers? (1)
Is our API understandable and flexible? (3)

Architecture (11)

(PLATEAU'2010)

What is the policy for doing this? (10) [24]
Is this the correct policy for doing this? (2) [15]
How is the allocation lifetime of this object maintained? (3)

Policies (15)

Who is the owner or expert for this code? (3)[7]
How do I convince my teammates to do this the “right way”? (12)
Did my teammates do this? (1)

Teammates (16)

© 2017 – Brad A. Myers19

Many opportunities for better tools

• Of all the reported questions
–34% addressed by commercial tools
–25% addressed by research tools
–41% unaddressed by any tools

20 © 2015 – Brad A. Myers

Example of Interviews: Immutability
• Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad Myers, Sam Weber, Forrest Shull, "Exploring Language Support for

Immutability" ICSE'2016. pp. 736-747.

• Experts recommend making classes immutable so instances cannot
change accidentally
– Thread safe, more secure, no unexpected state changes, etc.

• Usability studies suggest programmers prefer classes that can change
• Various relevant language features

– C++ const, Java final, Obj-C immutable collections, .NET Freezable, etc.
• Semi-structured interviews with a convenience sample of 8 software

engineers
– Agreed that mutability is a frequent source of bugs
– But none of these features are what is needed
– Preferred transitive, class-based immutability

• Provide this in the Glacier tool (to appear in ICSE’2017)
• Great Languages Allow Class Immutability Enforced Readily

21 © 2017 – Brad A. Myers

Exploratory Lab Studies
• To understand what is happening
• More controlled than field studies

– Can compare multiple people on same tasks
• Example: studying Eclipse for maintenance tasks

– Andrew J. Ko, Htet Htet Aung, and Brad A. Myers. "Eliciting Design Requirements for Maintenance-Oriented
IDEs: A Detailed Study of Corrective and Perfective Maintenance Tasks". ICSE’2005. pp. 126-135.
Winner, Distinguished Paper Award.

– Detailed study of fixing bugs and adding features
– Dataset used for 3 different award-winning papers: interruptions,

navigation, code editing behaviors

=35%
22 © 2017 – Brad A. Myers

Interactive Bottleneck Overall Cost
Navigating to fragment in same file (via scrolling) ~ 11 minutes
Navigating to fragment in different file
(via tabs and explorer) ~ 7 minutes
Recovering working set after returning to a task ~ 1 minute

Total Costs ~19 minutes

Corpus Data Mining

• Studied 11 million Java try/catch blocks from GitHub using
Boa tool

• 12% of catch blocks were completely empty.
• 25% of all exceptions caught are simply Exception
• Motivated a new tool to help programmers write better

exception handling code

23 © 2017 – Brad A. Myers

[Kery, Le Goues, & Myers, 2016]

Design Methods

• Now know the problem, what is the solution?
• How do I design it so it is attractive and

effective?

25 © 2017 – Brad A. Myers

“Natural Programming”
• Technique developed by my group to elicit developer’s

“natural” expressions
– Mental models of tasks, vocabulary, etc.

• Blank paper tests
• Must prompt for the tasks in a way that doesn’t bias the

answers
• Examples:

– PacMan before and after
• Mostly rule-based (if-then)

– API designs
• Architecture, words used, which methods are on

which classes

26 © 2017 – Brad A. Myers

Why Natural Programming?

• When want design to be easily learned by novices
• But biased by what they already know

– Graphic designers will think PhotoShop is “natural”
– Programmers will think Java is “natural”

27 © 2017 – Brad A. Myers

Graphic Design
• Importance of graphic design and interaction design
• Software Engineers (and researchers) are not necessarily

the best interaction designers
• Design can have a big impact even with same functionality
• Might involve designers for colors, icons, which controls, layout, …
• InterState system combines state transition diagrams and spreadsheets.
• Stephen Oney, Brad A. Myers, and Joel Brandt, "InterState: A Language and Environment for Expressing

Interface Behavior", UIST'14, October 5-8, 2014, Honolulu, Hawaii. pp. 263-272.
– Carefully designed to

be usable and
attractive

– Good graphic design
– Animations on change

28 © 2017 – Brad A. Myers

Prototyping

Try out designs with developers before implementing them
– Paper

• “Low fidelity prototyping”
• Often surprisingly effective
• Experimenter plays the computer
• Drawn on paper  drawn on computer

– Implemented Prototype (“Click through”)
• Balsamiq, Axure, PowerPoint, Web tools (even for non-web UIs)
• (no database)

– Real system

Need to test these with users!
Better if sketchier for early design

• Use paper or “sketchy” tools, not real widgets
• People focus on wrong issues: colors, alignment, labels
• Rather than overall structure and fundamental design

Increasing fidelity

29 © 2017 – Brad A. Myers

Example of Early Prototyping
• Thomas LaToza designing new visualization tool to try to help

answer Reachability Questions
• Prototypes created with Omnigraffle and printed
• Revealed significant usability

problems that were fixed
before implementation
– Graphical presentation
– Controls

30 © 2017 – Brad A. Myers

Another Example: Variolite

• How to support data scientists with exploratory programming?
• What kind of version control support would be useful?

– Interviews and CIs showed that conventional approaches like Git are
too heavy-weight

• Showed dozens of sketches to
target users to get feedback on
which seemed usable and useful

• Final design to appear at CHI’2017
• Variations Augment Real Iterative Outcomes

Letting Information Transcend Exploration

31 © 2017 – Brad A. Myers

© 2017 – Brad A. Myers

Evaluation Methods

• Does my tool work?
• Does it solve the developer’s problems?
• “If the user can’t use it, it doesn’t work!”

̶̶ Susan Dray

32

Expert Analyses
• Usability experts evaluating designs to look for problems

– Heuristic Analysis – [Nielsen] set of guidelines
– Cognitive Dimensions – [Green] another set
– Cognitive Walkthroughs – evaluate a task

• Can be inexpensive and quick
• However, experienced evaluators are better

– 22% vs. 41% vs. 60% of errors found [Nielsen]
• Disadvantage: “just” opinions, open to arguments

33 © 2017 – Brad A. Myers

© 2017 – Brad A. Myers

Our Use of Expert Analyses
• Collaborating with SAP on their APIs and tools
• We studied SAP’s Enterprise Service-Oriented Architecture (eSOA)

APIs & Documentation
– Jack Beaton, Sae Young Jeong, Yingyu Xie, Jeffrey Stylos, Brad A. Myers. "Usability Challenges for Enterprise Service-Oriented

Architecture APIs," 2008 IEEE Symposium on Visual Languages and Human-Centric Computing, VL/HCC'08. Sept 15-18, 2008,
Herrsching am Ammersee, Germany. pp. 193-196.

• Naming problems:
– Too long
– Not understandable

34

Usability Evaluations
• Different from formal A/B “user testing”

– Understand usability issues
– Should be done early and often

• Doesn’t have to be “finished” to let people try it
• “Think aloud” protocols

– “Single most valuable usability engineering method”
-- [Nielsen]

– Users verbalize what they
are thinking
• Motivations, why doing things,

what confused about
– Don’t need many users

35 © 2017 – Brad A. Myers

Why Usability Analysis

• Improve the user interface prior to:
– Deployment
– A/B testing (as a “pilot” test)

• Demonstrate that users can use the system
– Show that novel features of the UI are understandable

36 © 2017 – Brad A. Myers

Example of Using Usability Analysis
• Thomas LaToza’s REACHER tool for Reachability Questions went

through multiple iterations
– Revised based on paper prototype (discussed already)
– Revised based on 1st evaluation of full system

• E.g., replaced duplicates of calls to methods with pointers
• Changed to preserve order of outgoing edges
• Redesign of icons, interactions



37 © 2017 – Brad A. Myers

Another Example of Usability Analysis
• Sugilite: Smartphone Users

Generating Intelligent Likeable
Interfaces Through Examples

• Allow end-users to create
automations on Smartphones

• Initiate with speech commands
• Record scripts by example
• Generalizes from one or more examples
• 19 participants attempted 5 tasks

– All completed at least 2 tasks successfully
– 8 (42.1%) succeed in all 4 tasks
– Overall, 65 out of 76 (85.5%) scripts worked
– Feedback on what we need to improve

38 © 2017 – Brad A. Myers

Formal A/B testing
• Formal A/B lab user tests are “gold standard” for academic papers – to

show something is better
• But many issues in the study design

– “Confounding” factors which were not controlled and are not relevant
to study, but affect results

– Tasks or instructions are mis-understood
– Use prototypes & pilot studies to find these

• Statistical significance doesn’t mean real savings
• Be sure to collect qualitative data too

– Strategies people are using
– Why users did it that way
– Especially when unexpected results

39 © 2017 – Brad A. Myers

Example of A/B testing

• User testing of InterState
compared to JavaScript

40 © 2017 – Brad A. Myers

Task 1* Task 2**
0

10

20

30

40

time taken
(minutes)

JavaScript
InterState

p < .01**
p < .05 *

smaller is better

Another Example of A/B testing
• Gneiss: Gathering Novel End-user Internet Services using

Spreadsheets
– Kerry Chang and Brad A. Myers, "Using and Exploring Hierarchical Data in

Spreadsheets." CHI'2016, pp. 2497-2507.
• Novel spreadsheet interface for investigating hierarchical

(e.g., JSON) data
– Investigate using conventional spreadsheet formulas and drag-and-

drop of columns
• Gneiss users significantly outperformed Excel users and

programmers (p<.001)

41 © 2017 – Brad A. Myers

A/B Testing of Programming Language Feature

• Glacier immutability extension to Java
• 20 experienced Java programmers
• Compared to using Java final as instructed by Josh Bloch

42 © 2017 – Brad A. Myers

final Glacier
Users who made errors enforcing immutability
(after all tasks)

10/10 0/10

Completed FileRequest.execute() tasks with
security vulnerabilities

4/8 0/8

Completed HashBucket.put() tasks with bugs 7/10 0/7

Field Studies of System in Use

• Find out what happens when the tool is really used
• Requires significant effort to make the tool

sufficiently solid

43 © 2017 – Brad A. Myers

Logging Actual Use

• Easier if instrument your tools
• Objective use data better than users’ recollections and

opinions
• Many levels of data can be collected

– Privacy issues
• Example: Fluorite logger for Eclipse

– Fluorite: Full of Low-level User Operations Recorded In The Editor
– Records all edits and events, including

scrolling operations & source code,
– Necessary to identify patterns of backtracking

44 © 2017 – Brad A. Myers

Why Field Studies?

• Understand which features are used and how
– Not necessarily why
– Can sometimes follow up with questionnaires, interviews of

actual users
– Developers often are surprised at how system is used

• Demonstrate that people choose to use the system
when optional

• Easy to instrument web systems, some on-line tools

45 © 2017 – Brad A. Myers

Example of Field Analysis
• Apatite: Associative Perusing of APIs That Identifies Targets Easily
• Novel documentation tool that works

by association
– E.g., methods often used together

• Can start with verbs (actions) and find what
classes implement them

• Couldn’t figure out a comparison tool or
or a lab study

• Deployed on the web
• Mostly used for fast lookup from partial names

© 2017 – Brad A. Myers46

Summary of Insights
• Field and lab studies can reveal the real questions

– Answering these questions creates tools that are actually useful
• Researcher’s intuitions about what might be useful may be wrong
• Our experience highlights:

– Developers often have specific questions in mind, which can be exploited
in tools

– Code views are central
– Visualizations are often useful as navigation aides for code
– Ability to search is key

• Not just through code, but also through dynamic and static call-graphs, through
time, etc.

© 2015 – Brad A. Myers47

More on This Topic
• CHASE and USER workshops at ICSE; PLATEAU at SPLASH/OOPSLA; VL/HCC

• Brad A. Myers, Andrew J. Ko, Thomas D. LaToza, and YoungSeok Yoon. "Developers are Users
Too: Human Centered Methods to Improve Software Development," IEEE Computer, Special
issue on UI Design, 49, issue 7, July, 2016, pp. 44-52.

• Thomas D. LaToza and Brad A. Myers, "Designing Useful Tools for Developers", PLATEAU
2011: Evaluation and Usability of Programming Languages and Tools, workshop at the
Onward! 2011 and Splash 2011 conferences, Portland, Oregon, October 24, 2011. On-line
pdf or local pdf.

• Thomas D. LaToza, Brad A. Myers. "On the Importance of Understanding the Strategies that
Developers Use", Cooperative and Human Aspects of Software Engineering (CHASE’10), An
ICSE 2010 Workshop. May 2, 2010. Cape Town, South Africa. pp. 72-75. pdf

• Reading list for “Human Aspects of Software Development (HASD)” by Thomas LaToza
and Brad Myers

http://www.cs.cmu.edu/~bam/uicourse/2011hasd/

48 © 2017 – Brad A. Myers

http://ecs.victoria.ac.nz/Events/PLATEAU
http://ecs.victoria.ac.nz/twiki/pub/Events/PLATEAU/Program/plateau2011-latoza.pdf
http://www.cs.cmu.edu/%7Enatprog/papers/plateau2011-latoza.pdf
http://www.cs.cmu.edu/%7Etlatoza/chase10-final.pdf
http://www.cs.cmu.edu/%7Ebam/uicourse/2011hasd/

Euklas:
Eclipse
Users’
Keystrokes
Lessened by
Attaching from
Samples

Acronyms are fun!
And there are lots of Gemstones!!

49

C32
CMU's
Clever and
Compelling
Contribution to
Computer Science in
CommonLisp which is
Customizable and
Characterized by a
Complete
Coverage of
Code and
Contains a
Cornucopia of
Creative
Constructs, because it
Can
Create
Complex,
Correct
Constraints that are
Constructed
Clearly and
Concretely, and
Communicated using
Columns of
Cells, that are
Constantly
Calculated so they
Change
Continuously, and
Cancel
Confusion

Pebbles
PDAs for
Entry of
Both
Bytes and
Locations from
External
Sources

GARNET
Generating an
Amalgam of
Real-time,
Novel
Editors and
Toolkits

For more, see: www.cs.cmu.edu/~bam/acronyms.html

Azurite:
Adding
Zest to
Undoing and
Restoring
Improves
Textual
Exploration

Fluorite:
Full of
Low-level
User
Operations
Recorded In
The
Editor

Apatite:
Associative
Perusing of
APIs
That
Identifies
Targets
Easily

Graphite:
GRAphical
Palettes
Help
Instantiate
Types in the
Editor

Calcite:
Construction
And
Language
Completion
Integrated
Throughout

Jadeite:
Java
API
Documentation with
Extra
Information
Tacked-on for
Emphasis

Mica:
Makes
Interfaces
Clear and
Accessible

Jasper:
Java
Aid with
Sets of
Pertinent
Elements for
Recall

Crystal:
Clarifications
Regarding
Your
Software using a
Toolkit,
Architecture and
Language

Euclase:
End
User
Centered
Language,
APIs
System and
Environment

Aquamarine:
Allowing
Quick
Undoing of
Any
Marks
And
Repair
Improving
Novel
Editing

© 2015 – Brad A. Myers

Gneiss:
Gathering
Novel
End-user
Internet
Services using
Spreadsheets

Glacier
Great
Languages
Allow
Class
Immutability
Enforced
Readily

Variolite:
Variations
Augment
Real
Iterative
Outcomes
Letting
Information
Transcend
Exploration

Sugilite
Smartphone
Users
Generating
Intelligent
Likeable
Interfaces
Through
Examples

http://www.pebbles.hcii.cmu.edu/index.php
http://www.cs.cmu.edu/%7Ebam/acronyms.html
http://images.google.com/imgres?imgurl=http://www.orientaljadejewelry.com/DSCN0187.JPG&imgrefurl=http://www.orientaljadejewelry.com/bangles.htm&h=480&w=640&sz=33&hl=en&start=80&usg=__8TwN8oO0hOBrRBDl-NNOisyBsi4=&tbnid=7Hnu7F-4FzBLHM:&tbnh=103&tbnw=137&prev=/images?q=jadeite&start=60&ndsp=20&hl=en&rls=IBMA,IBMA:2006-17,IBMA:en&sa=N

© 2017 – Brad A. Myers

Thanks to:
• Funding:

– NSF under IIS-1116724, IIS-0329090, CCF-0811610, IIS-0757511 (Creative-IT),
ITR CCR-0324770 as part of the EUSES Consortium

– SAP
– Adobe
– IBM
– Microsoft Research RISE
– Yahoo! InMind

• >36 students:
 Htet Htet Aung
 Jack Beaton
 Ruben Carbonell
 John R. Chang
 Kerry S. Chang
 Polo Chau
 Luis J. Cota
 Michael Coblenz
 Dan Eisenberg

 Brian Ellis
 Andrew Faulring
 Aristiwidya B. (Ika)

Hardjanto
 Erik Harpstead
 Amber Horvath
 Sae Young (Sophie)

Jeong
 Mary Beth Kery
 Andy Ko
 Thomas LaToza

 Joonhwan Lee
 Toby Li
 Leah Miller
 Steven Moore
 Mathew Mooty
 Gregory Mueller
 Yoko Nakano
 Stephen Oney
 John Pane

 Sunyoung Park
 Michael Puskas
 Chotirat (Ann)

Ratanamahatana
 Christopher Scaffidi
 Jeff Stylos
 David A. Weitzman
 Yingyu (Clare) Xie
 Zizhuang (Zizzy) Yang
 YoungSeok Yoon

http://www.nsf.gov/

Programmers are Users Too:
Human Centered Methods for Improving
Tools for Programming

Brad A. Myers
Human-Computer Interaction Institute

School of Computer Science
Carnegie Mellon University

http://www.cs.cmu.edu/~bam
bam@cs.cmu.edu

51 © 2017 – Brad A. Myers

	Programmers are Users Too:�Human Centered Methods for Improving �Tools for Programming
	Natural Programming Project
	End User Programming
	Goal: Gentle Slope Systems
	Human Centered Approaches?
	What Can Be Addressed?
	“Human Centered Approaches” ̶̶ � More Than Lab User Studies
	Many HCI Methods
	Dangers of Not Applying Human Centered Approaches
	Dangers of Not Applying Human Centered Approaches
	Human Centered Approaches are�Not Too Difficult for You
	Key Decision: What is Your Question?
	Product Lifecycle
	Product Lifecycle
	Exploratory Studies
	Contextual Inquiry
	Why Contextual Inquiry?
	Example of Contextual Inquiry & Surveys
	Slide Number 19
	Many opportunities for better tools
	Example of Interviews: Immutability
	Exploratory Lab Studies
	Corpus Data Mining
	Design Methods
	“Natural Programming”
	Why Natural Programming?
	Graphic Design
	Prototyping
	Example of Early Prototyping
	Another Example: Variolite
	Evaluation Methods
	Expert Analyses
	Our Use of Expert Analyses
	Usability Evaluations
	Why Usability Analysis
	Example of Using Usability Analysis
	Another Example of Usability Analysis
	Formal A/B testing
	Example of A/B testing
	Another Example of A/B testing
	A/B Testing of Programming Language Feature
	Field Studies of System in Use
	Logging Actual Use
	Why Field Studies?
	Example of Field Analysis
	Summary of Insights
	More on This Topic
	Acronyms are fun!
	Thanks to:
	Programmers are Users Too:�Human Centered Methods for Improving �Tools for Programming
	Skiing!

